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Minimal sensitivity optimisation of perturbative wavefunctions 
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South Africa 
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Abstract. Stevenson’s principle of minimal sensitivity is applied directly to configuration 
space wavefunctions calculated in first-order perturbation theory. The redundant para- 
meters, which comprise the essential elements of minimal sensitivity calculations, actually 
become functions of configuration space, giving the method considerable flexibility and 
potential accuracy. It is shown that the method is exact in an illustrative class of simple 
cases, and, for the more realistic case of the ground state wavefunction of the quartic 
oscillator, it is considerably more accurate than the closely related perturbative variational 
approach, particularly in the asymptotic region. 

1. Introduction 

Stevenson’s principle of minimal sensitivity (PMS) (Stevenson 198 1) provides a powerful 
instrument for optimising and extending the useful domain of approximation methods, 
particularly perturbation theory. It asserts that if an approximation depends on para- 
meters of which the true result is known to be independent, then, in the absence of further 
information, that approximation is optimised by choosing those parameters so as to 
minimise the approximation’s sensitivity to small variations in their values. The optimised 
approximation is thus the one which most closely mimics the true result’s independence 
of redundant parameters. 

The insertion of such redundant parameters into a given problem can often be 
accomplished in a natural and straightforward fashion. For example, if a quantum 
system is described by a Hamiltonian H, one constructs an approximating Hamiltonian 
&({Ai}), which is exactly diagonalisable for all values of the parameters in the set 
{ A i } .  One can then write 

(1.la) 

where, of course, 

V((A,I) = ( H  - &({A,})), (1.16) 

and then proceed to calculate an approximation to any physical quantity of interest 
by applying orthodox perturbation methods to the form (1 .1~) .  Such a perturbative 
approximation will normally be dependent on the parameters in the set {Ai}, though 
it is clear from (1.1) that the true result is independent of them. Thus we may invoke 
PMS to choose the optimum values of the parameters in the set {A,} for that particular 
approximation. In general, PMS can be expected to select different values of these 
redundant parameters for perturbative approximations to different physical quantities- 
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indeed we can expect it to choose different values of the redundant parameters for 
different orders of perturbative approximation to the same physical quantity. It is 
precisely this element of adaptability which gives PMS its often surprising power and 
accuracy. Given an indication of the correct answer by the basic approximation method 
(e.g., perturbation theory), PMS locates the optimum redundant parameter values for 
the approximation at hand. Of course, the firmer is the indication of the correct 
answer-e.g., the more closely &({A[}) is capable of approximating H-the better one 
can expect the PMS optimised result to be. Thus PMS allows much scope for future 
development of the art of good approximations. The technically redundant parameters 
of the set { A I }  are, paradoxically, at their most useful when they are most nearly 
‘meaningful’, i.e., when they can be chosen so that &({A8}) is a good approximation 
to H-at least for the problem at hand. 

Stevenson (1981) has not given a proof of PMS, indeed he considers it to be not 
really susceptible to proof, although it embraces well known special cases, such as the 
first-order perturbative version of the Rayleigh-Ritz variational principle for quantum 
ground states, which are susceptible to proof. PMS rests on its clear-cut intuitive appeal, 
bolstered by a growing array of successful applications and theorems for special cases 
(Stevenson 1981, Caswell 1979). Although not sanctified by a general theorem, the 
status of PMS is, as Stevenson points out, no more nebulous than that of unoptimised 
perturbation theory itself (Stevenson 198 1). 

Stevenson actually formulated PMS for application to the orthodox perturbative 
expansions of renormalisable quantum field theories, where the redundant parameters 
arise from the true results’ independence of the renormalisation scheme utilised 
(Stevenson 1981). As the first to explicitly present a formal, general statement of PMS, 

Stevenson was, however, acutely aware of its wider implications, and gave as one 
example of these a PMS treatment of the energy level spectrum of the anharmonic 
oscillator along the general lines of equation (1 . l )  (Stevenson 198 1). Caswell (1979) 
had earlier made a similar application of PMS to this same problem (although he did 
not explicitly state PMS in its general form), and both Caswell and Stevenson obtained 
the energy levels of the quartic oscillator to 1-2’10 accuracy already from PMS optimised 
first-order perturbation theory (Stevenson 198 1, Caswell 1979) (ironically, the ground 
state energy, for which this first-order PMS calculation is just an orthodox application 
of the Rayleigh-Ritz variational principle, is the least accurately determined of these 
levels). 

These successes of PMS in determining energy levels prompted the present investiga- 
tion of its efficacy for determining the corresponding configuration space eigenfunc- 
tions. One possible approach to these wavefunctions, suggested by that conventionally 
used with the Rayleigh-Ritz variational principle optimisation of the approximate 
ground state energy, is to simply substitute the PMS energy optimised values of the 
redundant parameters into the corresponding approximated wavefunctions. Such 
‘variational wavefunctions’ are, however, well known to normally have accuracies 
inferior to those of their corresponding approximated energy eigenvalue (Dicke and 
Wittke 1960). Moreover, this approach is not in keeping with strict PMS, which requires 
that the redundant parameters be determined from the approximation to that quantity 
which one actually desires to calculate, i.e., from approximated wavefunction itself in 
this instance. 

Direct application of PMS to approximated configuration space eigenfunctions can 
be expected to lead, in general, to different values of the redundant parameters at 
different points of configuration space. Thus, strict adherence to PMS in this instance 
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leads to the somewhat unfamiliar circumstance of the redundant parameters becoming 
functions of configuration space. It is clear’ this has the potential to be a source of 
heightened calculational power, for the PMS wavefunctions are free to differ in functional 
form from the approximate wavefunctions which underlie them-a considerable 
enhancement in adaptability relative to the traditional ‘variational wavefunctions’. 
These PMS wavefunctions are normalised to unity a posteriori. 

In 9 2 we apply PMS to calculating both the energy eigenvalues and the energy 
eigenfunctions of a test harmonic oscillator problem, treated in perturbation theory, 
where the redundant parameter is the square of an unknown oscillator frequency, i.e. 
in the language of equation (1. l), 

H = f( p’ + x’) (1.2a) 

and 
Ho(A)  = f ( p 2  +AX’). (1.2b) 

We find that PMS applied to Jht-order perturbative approximations, whether of the 
energy eigenvalues or eigenfunctions, for this problem, always leads to A = 1, i.e., the 
exact answer. A little thought reveals that this is not a fortuitous occurrence for the 
harmonic oscillator, but one example of a theorem covering a broad class of similar 
problems. We are able to show that if, for a Hamiltonian of the form 

N 

H = H ’ + C  v,, 
, = I  

we write the approximating Hamiltonian 

(1.3a) 

then PMS applied to first- (or higher-) order perturbation theory must yield A i  = 1, 
i = 1, 2, . . . , N,  i.e., the exact result. This illustrates quite dramatically the ‘benevolent 
paradox’ (Stevenson 1981) of the ability of PMS to make perturbation theory into a 
non-perturbative technique. It also throws some heuristic light on the not infrequent 
occurrence that PMS yields excellent results already from first-order perturbation theory, 
with the accuracy improving only slowly as one goes to higher orders (Stevenson 1981). 

In 9 3 we apply PMS directly to the first-order perturbative calculation of the ground 
state wavefunction of the quartic oscillator, whose exact Hamiltonian is 

H = f( p* + x4), (1.4a) 

and for which we use an harmonic oscillator approximating Hamiltonian which is 
essentially the same as that of equation (1.2b), 

(1.4b) 

Technical ambiguities in the PMS determination of A as a function of x are resolved 
by the physical requirement that the resulting wavefunction be continuous and nor- 
malisable. This is in accord with Stevenson’s admonition to make the maximum 
sensible use of available information when determining an approximation-a broad 
principle which simultaneously embraces and transcends PMS (Stevenson 198 1). 

The resulting PMS ground state wavefunction is compared with the exact (numeri- 
cally computed) result as well as the corresponding variational ground state wavefunc- 
tion and its first-order perturbative correction. The PMS wavefunction is superior to 
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these other closely related approximate wavefunctions, especially in the asymptotic 
region, where the latter have very large fractional errors. This improvement is important, 
for example, in determining the expectation values of high-order moments of x. Using 
the PMS wavefunction to compute the expectation value of the Hamiltonian yields a 
ground state energy approximation which is more than an order of magnitude more 
accurate than the already good values determined by the variational principle itself or 
its first perturbative correction. 

2. Exact results from perturbative PMS in an illustrative class of cases 

For the harmonic oscillator problem of equation (1.2) we readily calculate the energy 
eigenvalues in first-order perturbation theory (i.e., including both the zeroth- and 
first-order contributions), 

E‘,~”’(A) = (n +I 2)A’/2[1 +i(l -A)A-’]=(n +$) ( i ) (A”2+A-”2) ,  

as well as the ground state energy eigenfunction to first order, 

qlIIoiA(x;A) = ( A  ‘ I2 /  77)’14 exp( -$A I”x2)[ 1 +$( 1 - A ) A  -’( 1 - 2 A  ‘12x2)]. 

n = 0 , 1 , 2  , . . . ,  
(2.1 a )  

(2.1 b) 

We now apply PMS by setting the derivative of these approximations with respect to 
A(the redundant parameter) to zero (Stevenson 1981, Caswell 1979) 

aE~03”(A)/aA = -(n +&:)(1 - A ) K 3 l 2 = 0  (2.2a) 

and 

~I,!I$~.”(X ;A)/dA = - ( A  ‘ I 2 /  7 ~ ) ” ~  exp( - f A  ”’x’)(~)( 1 - A ) A  -’[ 1 - (i)( 1 + 2A ‘/2x2)2] = 0. 
(2.2b) 

We see that equations (2.2) are all solved by A = 1, which yields the exact results, 
when substituted into equations (2.1). Equation (2.2b) also has an extraneous x -  
dependent solution for A, which is discarded, as it would render the approximate 
solution (2.1 b) non-normalisable. We shall return to this matter of resolving ambiguities 
in PMS in the more realistic problem treated in 0 3. 

The above treatment can be readily extended to the complete set of energy eigenfunc- 
tions by calculating and utilising the generating function of these first-order perturbed 
eigenfunctions, 

G ( ~ . ’ ) ( x ; ~ ; A )  

= - 2 s n , p , l )  (x;A)(n!)-”2 

= (A ‘ I 2 /  T ) ” ~  exp{ -$[A ‘/2x2 +2(2A 1’2)1/2xs + s’]} 
n =O 

X{l +$(1 - A ) A - ’ [ l  - 2 ( 2 A 1 / ’ ) ’ / 2 ~ ~  - ~ A ” ’ x ~ ] } .  

We readily find that the equation 

dG‘031’(~; s; A ) / a A  = 0 

is again solved by A = 1 (for all x and s). 
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Our laborious verification that PMS always yields exact results already from first- 
order perturbation theory for this test problem suggests the theorem that this is true 
as well for the whole class of similar problems defined by equation (1.3). Indeed, the 
kth-order contribution to the perturbative expansion of any physical quantity governed 
by the system (1.3) must consist of a sum of terms, each of which has a coefficient of 
the form 

N 

(1 - A i ) “ ‘ *  
i = i  

where each n, 20 and 
N 

n, = k. 
z = I  

( 2 . 5 ~ )  

(2.5b) 

For k a 2 ,  such coefficients are all stationary in the N-dimensional variable 
( A l ,  A 2 , .  . . , A N )  at the point A I  = A 2  =. . . = AN = 1. Thus, the second- and higher-order 
contributions to the perturbative expansion of any physical quantity governed by 
equation (1.3) must be stationary at the exact solution point A ,  = A 2  = , . . = A N  = 1. 
Since the exact solution is independent of (A I ,  A2,  . . . , AN), and thus obviously stationary 
everywhere, it follows that the zeroth- plus first-order perturbative contribution (i.e., 
the perturbative approximation to first order), which is the exact result minus all the 
perturbative contributions of order greater than or equal to two, must also be stationary 
at the exact solution point A ,  = A 2  = . . . = A N  = 1. Thus we have that any perturbative 
approximation to first- or higher-order arising from the system (1.3) is stationary at 
the exact solution point A I  = A 2  = . . . = A N  = 1 .  

We turn now to a more realistic application of PMS. 

3. Application of perturbative PMS to the ground state of the quartic oscillator 

For the perturbative quartic oscillator system of equation (1.4), the zeroth-order (har- 
monic oscillator) ground state energy eigenvalue and eigenfunction are 

E(0) ( A ) = ~ A  

and 
+(O) (xi  A )  = (A/T)”‘  exp( -:Ax2), 

and the corresponding first-order results are 

and 

+bo3”(x; A )  =(A/T)”‘  exp( --4Ax2){l +Q[2Ax2- 1 - h - 1 ~ 4 - 3 h - 2 x 2 + 3 ( ~ A - 3 ) ] } ,  

To apply PMS, we differentiate equations (3.2) with respect to A to obtain 

and 

a+boX”(x; A ) / a A  

E bo’.”( A )  = + A  [ 1 + (:A -3 - i)] 

aEbO.”(h)/aA = -$A-3(3-A3) 

= -(128A4)”(A/~)’” exp( -&i~~){[2(2Ax~)~ +4(2Ax2)- 14](2A3) 

  AX^)^ + 9 ( 2 A ~ ~ ) ~  +33(2Ax2) -991). 

( 3 . 1 ~ )  

(3.lb) 

(3.2a) 

(3.26) 

(3.3a) 

(3.36) 



2032 S K Kaufmann and S M Perez 

From equation (3.3a), the vanishing of aE~s” (A) /aA implies that A = 3‘/3, which, 
when substituted into equation (3.2a), yields the ‘variational’ ground state energy 
estimate of i ( 3 ) ’ / 3  = 0.540 844.. . , This may be compared with the exact result, 
0.530 18 1 . . , , which is about 2% smaller (Stevenson 198 1). When A = 3’13 is substituted 
into equation (3.1 b) ,  the result is the ‘variational’ ground state eigenfunction, and when 
it is substituted into equation (3.26), the result is the first-order perturbatively corrected 
version of this wavefunction, which we subsequently normalise numerically. Plots, on 
both linear and log scales, of these approximate wavefunctions are given together with 
the exact (numerically computed) ground state wavefunction in figures 1 4 .  Both of 
these approximate wavefunctions are seen to suffer from very severe fractional errors 
for 1x1 >> I ,  and the perturbatively corrected version has, in addition, an unphysical 
change of sign in this region, although it is more accurate than the simple variational 
wavefunction for 1x1 s 1. These features are also reflected by the numbers given in 
table 1. 

The procedure to obtain the PMS optimised ground state wavefunction q!&’)(x,A) 
is to set d+P”’/aA = 0 in (3.36) and substitute the resulting value of A ( x )  into (3.26). 
We select among the multiple roots A by taking into account the conditions of continuity 
and normalisability of +boV’’. It turns out that the required h ( x )  is positive everywhere. 

At x = 0, equation (3.36) has only one real root, A = (99/28)’13, which, not coinciden- 
tally, differs from the ‘variational’ A = (3)’’3 by less than 6%.  The continuity criterion 
then allows the tracing of this root to ixl=O.72, where it crosses with another 
‘unphysical’ one which +CO as Ixl+O and - 0  as /x /+co.  We discuss the region 

-01 L I , , ,  I l l  

-5 0 5 -5 0 5 
X X 

Figure 1. Variational ground state wavefunction 
approximation (broken curve) for the quartic oscil- 
lator against the exact solution (full curve) on a linear 
scale. 

Figure 2. Variational approximation (broken curve) 
against exact ground state wavefunction (full curve) 
for the quartic oscillator on a log scale. 
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I 
-011 I ! 1 ! 1 1 1 1 1 

-5 0 5 
X x 

Figure 3. Perturbatively corrected variational Figure 4. Perturbatively corrected variational 
approximation (broken curve) against exact ground approximation (broken curve) against exact ground 
state wavefunction (full curve) for the quartic oscil- state wavefunction (full curve) for the quartic oscil- 
lator on a linear scale. lator on a log scale. 

Table 1. Quartic oscillator ground state wavefunction. 

Perturbatively 
corrected 

Exact Variational variational PMS 

1x1 solution approximation approximation ~ ( x )  ( ( IX I / \ '? )~  + 3)' j3 approximation 
~ 

0 0.793 
0.5 0.691 
1.0 0.427 
1.5 0.159 
2.0 2.84 x 
2.5 1.90 X 

3.0 3.72 X 

4.0 1.29 X IO-" 

5.0 1.57 X 

3.5 I .65 x IO-? 

4.5 1.38 x 

0.823 
0.687 
0.400 
0.162 
4.60 x 1 0-2  
9.08 x 
I 2 5  x 
l . 20x10-4  

3.75 x lo-? 
1.22 x lo-* 

8.03 x 

0.796 1.52 1.44 
0.692 1.52 1.45 
0.425 1.50 1.50 
0. I52  1.60 1.61 
1.39x10-2 1.78 1.80 

-5.53 X IO-' 2.31 2.32 
-1.18 X 2.61 2.63 
-1.47 x 2.94 2.95 

-1.17 x 2.02 2.04 

-1.16 X 3.27 3.28 
-5.93 X IO-' 3.60 3.61 

0.795 
0.692 
0.425 
0.156 
2.73 X 

1 . 7 4 X 1 0 - ~  
3.05 x  IO-^ 

4.44 x 10-l5 

1 . 1 1  x10-? 
6.40 X lo - ' '  

2.83 X IO-2o 

0.72 G 1x1 G 0.85 in more detail below. From (3 .26)  and the normalisability criterion, 
we must have Ax2+ +CO as IxI+oo, so that (3 .3b)  fixes the asymptotic behaviour of 
the required root to be A -  [X I /& .  The continuity criterion then allows the tracing of 
this root back to 1x1 = 0.85 where it again crosses with the 'unphysical' root. This 
procedure thus determines the required root for Os 1x1 d 0.72 and 1x1 b 0.85. 
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In the region 0.72 s 1x1 S 0.85 there is no real root which satisfies the continuity 
requirements at the limits of the interval. Here we achieve continuity and satisfy PMS 
by requiring that ld+/aA I be locally minimised. 

One can very crudely summarise the behaviour of the resulting A ( x ) ,  for all x, by 
the approximate formula, 

A ( x )  = ( ( I x ~ / & ) ~  +3)”3. (3.4) 

Indeed, equation (3.4) differs from the actua4 A ( x )  by no more than I O % ,  and much 
less than this for most x, as is indicated in figure 5 and table 1. Inserting the actual 
A ( x )  into equation (3.2b) and normalising, we arrive at the PMS ground state wavefunc- 
tion approximation, which we plot together with the exact wavefunction on both linear 
and log scales in figures 6 and 7, with some representative corresponding numbers 
also given in table 1. In figure 6 the PMS and exact ground state wavefunctions are 
almost indistinguishable, while the log scale in figure 7 shows the PMS wavefunction 
to be decreasing marginally too rapidly for 1x1 >> 1, the asymptotic region of extremely 
small amplitude, where the PMS result is nevertheless vastly more accurate than the 
closely related variational and perturbatively corrected variational results shown in 
figures 2 and 4 and in table 1. We note, in passing, that the rapid, if small, variations 
in A ( x )  in the region 0.6s IxlSO.9, as shown in figure 5 ,  have no counterpart in the 
resulting PMS wavefunction, shown in figure 6. Indeed, in this region the PMS wavefunc- 
tion is monotonic and virtually linear, and differs from the exact wavefunction by less 
than one half percent. 

-01 Illj/llllll 
-5 0 5 -5 0 5 

X k 

Figure2. PMS A ( x )  (full curve) and its approximation 
[(lxl/JZ)’ +3]”’ (broken curve) for the quartic oscil- 
lator. 

Figure 6. PMS approximation (broken curve) against 
exact ground state wavefunction (full curve) for the 
quartic oscillator on a linear scale. 
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10-2Ol . 1 . 1 I 1 ! 1 1 I 
-5 0 5 

X 

Figure 7. PMS approximation (broken curve) against exact ground state wavefunction (full 
curve) for the quartic oscillator on a log scale. 

Finally, we note that the energy expectation value computed using the variational 
wavefunction is 0.5408.. . , as noted previously, about 2% too high, and that computed 
using the perturbatively corrected variational wavefunction is 0.5371 . . . , about 1.3% 
too high, while that computed using the PMS wavefunction is 0.5307.. . , only 0.1% 
too high. In this instance, PMS applied to the wavefunction gives a much more accurate 
energy result than does its direct application to the energy itself. 

4. Conclusion 

We believe that perturbative PMS applied directly to wavefunctions will prove to be 
an important technique. Also, the general approach of having the redundant PMS 
parameters become functions of some of the continuum variables describing a system 
may prove valuable in a variety of problems as a means of greatly enhancing the 
accuracy of traditional approximation methods. For example, statistical mechanics 
calculations might be tackled using PMS perturbation theory, with the redundant 
parameters becoming functions of macroscopic variables such as temperature. 
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